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DEADLOCKS 

INTRODUCTION 

 Deadlock: “A lock having no keys” 

 In a multiprogramming environment, several processes 

may compete for a finite number of resources. A process 

requests resources; if the resources are not available at 

that time, the process enters a waiting state. Sometimes, a 

waiting process is never again able to change state, 

because the resources it has requested are held by other 

waiting processes. This situation is called a deadlock. 

 The resources are partitioned into several types, each 

consisting of some number of identical instances. 

 If a system has two CPUs, then the resource type CPU has 

two instances. Similarly, the resource type printer may 

have five instances. 

 A process may utilize a resource in only the following 

sequence: 

1. Request. The process requests the resource. If the 

request cannot be granted immediately then the 

requesting process must wait until it can acquire the 

resource. 

2. Use. The process can operate on the resource  

3. Release. The process releases the resource. 

 A system table records whether each resource is free or 

allocated; for each resource that is allocated, the table also 

records the process to which it is allocated. If a process 
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requests a resource that is currently allocated to another 

process, it can be added to a queue of processes waiting for 

this resource. 

 Example for deadlock: consider a system with one printer 

and one DVD drive. Suppose that process Pi is holding the 

DVD and process Pj is holding the printer. If Pi requests 

the printer and Pj requests the DVD drive, a deadlock 

occurs. 

 

NECESSARY CONDITIONS FOR DEADLOCK 
 

 For occurring deadlocks, 4 necessary conditions should be 

satisfied: 

1. Mutual exclusion. At least one resource must be held in a 

non-sharable mode; that is, only one process at a time can 

use the resource. If another process requests that resource, 

the requesting process must be delayed until the resource 

has been released. 

2. Hold and wait. A process must be holding at least one 

resource and waiting to acquire additional resources that 

are currently being held by other processes. 

3. No preemption. Resources cannot be preempted; that is, a 

resource can be released only voluntarily by the process 

holding it, after that process has completed its task. 

4. Circular wait. A set {P0 , Pl, ... , Pn} of waiting processes 

must exist such that Po is waiting for a resource held by 

P1, P1 is waiting for a resource held by P2, ... , Pn-1 is 
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waiting for a resource held by Pn and Pn is waiting for a 

resource held by Po. 

 

RESOURCE-ALLOCATION GRAPH 
 

 Deadlocks can be described more precisely in terms of a 

directed graph called a system resource-allocation graph.  

 This graph consists of a set of vertices V and a set of edges 

E. The set of vertices V is partitioned into two different 

types of nodes: P = {P1, P2, ... ,Pn}, the set consisting of 

all the active processes in the system, and R = {R1, R2, ... , 

Rm}  the set consisting of all resource types in the system. 

 A directed edge from process Pi to resource type Rj is 

denoted by Pi→Rj; it signifies that process Pi has 

requested an instance of resource type Rj and is currently 

waiting for that resource.  

 A directed edge from resource type Rj to process Pi is 

denoted by Rj→Pi; it signifies that an instance of resource 

type Rj has been allocated to process Pi.  

 A directed edge Pi→Rj is called a request edge; a 

directed edge Rj→Pi is called an assignment edge. 

 We represent each process Pi as a circle and each resource 

type Rj as a rectangle. Since resource type Ri may have 

more than one instance, we represent each such instance as 

a dot within the rectangle. 



D e p t  o f  C S E ,  M B I T S   Page 4 
 

 A request edge points to only the rectangle Rj, whereas an 

assignment edge must also designate one of the dots in the 

rectangle. 

 When process Pi requests an instance of resource type Rj, a 

request edge is inserted in the resource-allocation graph. 

When this request can be fulfilled, the request edge is 

instantaneously transformed to an assignment edge. When 

the process no longer needs access to the resource, it 

releases the resource; as a result, the assignment edge is 

deleted. 

 Consider the following resource-allocation graph 

 
 Process P1 is holding an instance of resource type R2 

and is waiting for an instance of resource type R1. 

 Process P2 is holding an instance of R1 and an instance 

of R2 and is waiting for an instance of R3. 
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 Process P3 is holding an instance of R3. 

 If the graph contains no cycles, then no process in the 

system is deadlocked.  

 If the graph contains a cycle, then a deadlock may exist. 

 If each resource type has exactly one instance, then a 

cycle implies that a deadlock has occurred. 

 In this case, a cycle in the graph is both a necessary and 

a sufficient condition for the existence of deadlock. 

 If each resource type has several instances, then a cycle 

does not necessarily imply that a deadlock has 

occurred. In this case, a cycle in the graph is a 

necessary but not a sufficient condition for the existence 

of deadlock. 

 Eg1:  
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 There are 2 cycles: 

P1 – R1 – P2 – R3 – P3 – R2 – P1 

P2 – R3 – P3 – R2 – P2 

 Processes P1, P2, and P3 are deadlocked. Process P2 is 

waiting for the resource R3, which is held by process P3. 

Process P3 is waiting for either process P1 or process P2 

to release resource R2. In addition, process P1 is waiting 

for process P2 to release resource R1. 

 Another Eg2: 

 

 Here also we have a cycle:  P1 – R1 – P3 – R2 – P1 

 However, there is no deadlock. Observe that process P4 

may release its instance of resource type R2. That resource 

can then be allocated to P3, breaking the cycle. 

 In summary, if a resource-allocation graph does not 

have a cycle, then the system is not in a deadlocked 
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state. If there is a cycle, then the system may or may not 

be in a deadlocked state. 

 
 

METHODS FOR HANDLING DEADLOCKS 
 

1. Prevent or avoid deadlocks ensuring that the system will 

never enter a deadlocked state.  

2. Allow the system to enter a deadlocked state, detect it, 

and recover it. 

3. Ignore the deadlock problem and pretend that deadlocks 

never occur in the system. 
 

 The third solution is the one used by most OS, including 

UNIX and Windows 

 It is then up to the application developer to write programs 

that handle deadlocks. 

 In this case, the undetected deadlock will affect system's 

performance 

 Eventually, the system will stop functioning and will need 

to be restarted manually. 

 In many systems, deadlocks occur infrequently (say, 

once per year). So, this method is cheaper than the 

prevention, avoidance, or detection and recovery methods. 
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DEADLOCK PREVENTION 
 

 For a deadlock to occur, each of the four necessary 

conditions must hold.  

 By ensuring that at least one of these conditions cannot 

hold, we can prevent the occurrence of a deadlock. 
 

1. Mutual Exclusion 
 

 The mutual-exclusion condition must hold for non-sharable 

resources. 

 Sharable resources do not require mutually exclusive 

access and thus cannot be involved in a deadlock.  

 Read-only files are a good example of a sharable resource. 

 However, we cannot prevent deadlocks by denying the 

mutual-exclusion condition, because some resources are 

basically non-sharable. 
 

2. Hold and Wait 
 

 To ensure that the hold-and-wait condition never occurs in 

the system, guarantee that, whenever a process waits for a 

resource, it does not hold any other resources. 

 One method that can be used requires each process to 

request and be allocated all its resources before it 

begins execution. 

 An alternative method allows a process to request some 

resources only when it has no resources. ie Before it can 
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request any additional resources it must release all the 

resources that it is currently allocated. 

 Example: Consider a process that copies data from a DVD 

drive to a file on disk, sorts the file, and then prints the 

results to a printer.  

 If all resources must be requested at the beginning of the 

process, then the process must initially request the DVD 

drive, disk file, and printer. It will hold the printer for its 

entire execution, even though it needs the printer only at 

the end. 

 The second method allows the process to request initially 

only the DVD drive and disk file. It copies from the DVD 

drive to the disk and then releases both the DVD drive and 

the disk file.  

 The process must then again request the disk file and the 

printer. After printing, it releases these two resources and 

terminates. 

 Disadvantages: In first method, resource utilization 

may be low, since resources may be allocated but unused 

for a long period. 

 In second method, we can release the DVD drive and disk 

file, and then again request the disk file and printer only if 

we can be sure that our data will remain on the disk 

file.ie no other process changes the data in disk file. 
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3. No Preemption 
 

 To ensure that this condition does not hold, we can use 

preemption.  

 If a process is holding some resources and requests another 

resource that cannot be immediately allocated to it (that is, 

the process must wait), then all resources the process is 

currently holding are preempted.  

 If a process requests some resources, first check whether 

they are available.  

 If available allocate them.  

 If they are not available, check whether they are allocated 

to some other process that is waiting for additional 

resources.  

 If so, preempt the desired resources from the waiting 

process and allocate them to the requesting process.  

 If the resources are neither available nor held by a waiting 

process, the requesting process must wait. While it is 

waiting, some of its resources may be preempted, only 

if another process requests them. 

 The process will be restarted only when it can regain its 

old resources, as well as the new ones that it is requesting. 
 

4. Circular Wait 
 

 Ensure that this condition never holds 
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 Impose a total ordering of all resource types and to 

require that each process requests resources in an 

increasing order of enumeration. 

 Let R = {R1, R2, ... ,Rm} be the set of resource types.  

 Assign to each resource type a unique integer number, 

which allows us to compare two resources and to 

determine whether one precedes another in our ordering.  

 Define a one-to-one function F: R →N, where N is the set 

of natural numbers. 

 Example,  

F (tape drive) = 1 

F (disk drive) = 5 

F (printer) = 12 

 Each process can request resources only in an 

increasing order of enumeration. 

 A process can initially request any number of instances of 

a resource type Ri.  

 After that, the process can request instances of resource 

type Rj if and only if F(Rj) >F(Ri). 

 A process requesting an instance of resource type Rj must 

have released any resources Ri such that F(Ri)>=F(Rj). 

 Let the set of processes involved in the circular wait be 

{P0 , P1, ... , Pn,}where Pi is waiting for a resource Ri, 

which is held by process Pi+l· 

 Since process Pi+1 is holding resource Ri while requesting 

resource Ri+1, we must have F(Ri) < F(Ri+1) for all i.  
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 But this condition means that F(R0) < F(R1) < ... < F(Rn) 

<F (R0).  

 By transitivity, F(R0) < F(R0), which is impossible. 

Therefore, there can be no circular wait. 

 Eg: Consider Process P1 holds resource number 1 and 

waits for resource number 2. Process P2 holds resource 

number 2 and waits for resource number 3. Process P3 

holds resource number 3 but cannot wait for resource 

number 1, since 1<3. So there should not be a circular 

waiting situation, if we follow the increasing order of 

resources. 

 

DEADLOCK AVOIDANCE 
 

 It requires additional information about how resources 

are going to be requested in future. 

 When a process request for a resource, the system should 

be able to decide whether it can be granted or not. 

 In this decision making, the system consider the resources 

currently available, the resources currently allocated to 

each process, and the future requests and releases of each 

process. 

 Each process declares the maximum number of resources 

that it may need. 

 A deadlock-avoidance algorithm dynamically examines the 

resource-allocation state to ensure that a circular wait 

condition can never exist. 
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 The following algorithms are used for deadlock avoidance 
 

1. Safe State Algorithm 
 

 A state is safe if the system can allocate resources to each 

process in some order and still avoid a deadlock.  

 A system is in a safe state only if there exists a safe 

sequence.  

 A sequence of processes <P1, P2, ... , Pn> is a safe 

sequence if, for each Pi, the resource requests by Pi can be 

satisfied by the currently available resources plus the 

resources held by all Pj, with j <i.  

 If the resources that Pi needs are not immediately 

available, then Pi can wait until all Pj have finished. When 

they have finished, Pi can obtain all of its needed 

resources, complete its designated task, return its allocated 

resources, and terminate.  

 When Pi terminates, Pi+l can obtain its needed resources, 

and so on.  

 If no such sequence exists, then the system state is said 

to be unsafe. 

 A safe state is not a deadlocked state.  

 A deadlocked state is an unsafe state.  

 Not all unsafe states are deadlocks; unsafe state may 

lead to a deadlock. 
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 Example: Consider a system with twelve magnetic tape 

drives and three processes: Po, P1, and P2. Process Po 

requires ten tape drives, process P1 may need four tape 

drives, and process P2 may need up to nine tape drives.  

 Suppose currently process Po is holding five tape drives, 

process P1 is holding two tape drives, and process P2 is 

holding two tape drives.  

 

 The system is in a safe state. The sequence <P1, P0, P2> 

satisfies the safety condition.  
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 Process P1 can immediately be allocated its free tape 

drives (2 more) and then return them  

 Then process Po can get all its tape drives and return them 

(1 free + 4 from P1 = total 5) 

 Finally process P2 can get all its tape drives and return 

them (all are free now) 

 A system can go from a safe state to an unsafe state 

suddenly.  

 Suppose process P2 requests and is allocated one more 

tape drive.  

 The system is no longer in a safe state.  

 After allocating one more tape drive to P2, there are 2 

more free. 

 Process P1 can be allocated with these 2 and complete it. 

 When it returns them, the system will have only four 

available tape drives.  

 Po needs five more tape drives. It will have to wait, 

because they are unavailable.  

 Similarly, process P2 may request six additional tape 

drives and have to wait, resulting in a deadlock.  

 Our mistake was in granting the request from process P2 

for one more tape drive. 

 If we had made P2 wait until either of the other processes 

had finished and released its resources, then we could have 

avoided the deadlock. 
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 The request is granted only if the allocation leaves the 

system in a safe state. 

 Drawback: If a process requests a resource that is 

currently available, it may still have to wait. Thus, 

resource utilization may be lower 
 

2. Resource-Allocation-Graph Algorithm 
 

 Applicable to the systems with only one instance of each 

resource. 

 In a resource allocation graph, in addition to the request 

and assignment edges we introduce a new type of edge, 

called a claim edge. 

 A claim edge Pi →Rj indicates that process Pi may 

request resource Rj at some time in the future.  

 This edge resembles a request edge in direction but is 

represented in the graph by a dashed line.  

 When process Pi requests resource Rj, the claim edge 

Pi→Rj is converted to a request edge. 

 Before process Pi starts executing, all its claim edges must 

already appear in the resource-allocation graph. 

 Suppose that process Pi requests resource Rj. The request 

can be granted only if converting the request edge       

Pi →Rj to an assignment edge Rj→Pi does not result in 

the formation of a cycle in the resource-allocation graph.  
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 We check for safety by using a cycle-detection algorithm. 

It requires an order of n
2 

operations, where n is the 

number of processes in the system. 

 If no cycle exists, then the allocation of the resource will 

leave the system in a safe state.  

 If a cycle is found, then the allocation will put the system 

in an unsafe state. In that case, process Pi will have to wait 

for its requests to be satisfied. 

 Consider the resource-allocation graph below: 

 

 

 Suppose P2 requests R2. Although R2 is currently free, we 

cannot allocate it to P2, since this action will create a cycle 

in the graph 

 A cycle indicates that the system is in an unsafe state. If P1 

requests R2, and P2 requests R1, then a deadlock will 

occur. 

 Drawback: Applicable to the systems with only one 

instance of each resource. 
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3. Banker's Algorithm 

[Will be discussed later] 

 

DEADLOCK DETECTION 
 

 If a system does not employ either a deadlock-prevention 

or a deadlock avoidance algorithm, then a deadlock 

situation may occur. 

 An algorithm examines the state of the system to determine 

whether a deadlock has occurred or not 
 

1. Single Instance of Each Resource 
 

 If all resources have only a single instance, then we can 

define a deadlock detection algorithm that uses a variant 

of the resource-allocation graph, called a wait-for 

graph.  

 We obtain this graph from the resource-allocation 

graph by removing the resource nodes and collapsing 

the appropriate edges. 

 As before, a deadlock exists in the system if and only if 

the wait-for graph contains a cycle 

 An algorithm to detect a cycle in a graph requires an order 

of n2 operations, where n is the number of vertices in the 

graph. 
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 Drawback: The wait-for graph scheme is not applicable to a 

resource-allocation system with multiple instances of each 

resource type. 
 

2. Several Instances of a Resource 
 

 Deadlock detection algorithm is used 

 Similar to Bankers algorithm 

 In Bankers algorithm (deadlock avoidance), future 

information (Max & Need) is also considered. But during 

deadlock detection, future information is not needed. Only 

the present request is considered. 

 All data structures in detection algorithms are same as that 

of Bankers algorithm except in the case of Max & Need. 

 Here we use a matrix Request instead of Need. 
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 Deadlock detection Algorithm: 

[Write Bankers algorithm by renaming Need as Request] 

 Example problem 

[Will be discussed later] 
 

 

RECOVERY FROM DEADLOCK 
 

 When a detection algorithm determines that a deadlock 

exists either it may be handled manually by the user or 

recovered automatically by the OS 

 There are two options for breaking a deadlock. One is 

simply to abort one or more processes to break the 

circular wait. The other is to preempt some resources 

from one or more of the deadlocked processes. 
 

Process Abortion 
 

 2 ways are there for process abortion 

1. Abort all deadlocked processes.  

o This method clearly will break the deadlock cycle, but 

at great expense. 

o All the work done by these processes become invalid 

and to be recomputed again 

2. Abort one process at a time until the deadlock cycle is 

eliminated.  

o After aborting each process, deadlock detection 

algorithm is run. 
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o We must determine which deadlocked process should 

be aborted.  

o This determination is a policy decision, similar to 

CPU-scheduling decisions. 

o We should abort those processes whose termination 

will incur the minimum cost. 

o Many factors may affect which process is chosen: 

 What the priority of the process is? 

 How long the process has computed and how 

much longer the process will compute before 

completing its designated task 

 How many and what types of resources the 

process has used 

 How many more resources the process needs in 

order to complete 

 How many processes will need to be terminated 

 Whether the process is interactive or batch 
 

 Drawback of process abortion: If the process was in the 

middle of updating a file, aborting it will leave that file in 

an incorrect state. 
 

Resource Preemption 
 

 We can successively preempt some resources from 

processes and give these resources to other processes until 

the deadlock cycle is broken. 

 Three issues need to be addressed: 
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 Selecting a victim. Which resources and which processes 

are to be preempted? We must determine the order of 

preemption to minimize cost. Cost factors may include 

such parameters as the number of resources a deadlocked 

process is holding and the amount of time the process has 

thus far consumed during its execution. 

 Rollback. If we preempt a resource from a process, what 

should be done with that process? Clearly, it cannot 

continue with its normal execution; it is missing some 

needed resource. We must roll back the process to some 

safe state and restart it from that state. 

 Starvation. How do we ensure that starvation will not 

occur? That is, how can we guarantee that resources will 

not always be preempted from the same process? 

 


