
D e p t o f C S E , M B I T S Page 1

DEADLOCKS

INTRODUCTION

 Deadlock: “A lock having no keys”

 In a multiprogramming environment, several processes

may compete for a finite number of resources. A process

requests resources; if the resources are not available at

that time, the process enters a waiting state. Sometimes, a

waiting process is never again able to change state,

because the resources it has requested are held by other

waiting processes. This situation is called a deadlock.

 The resources are partitioned into several types, each

consisting of some number of identical instances.

 If a system has two CPUs, then the resource type CPU has

two instances. Similarly, the resource type printer may

have five instances.

 A process may utilize a resource in only the following

sequence:

1. Request. The process requests the resource. If the

request cannot be granted immediately then the

requesting process must wait until it can acquire the

resource.

2. Use. The process can operate on the resource

3. Release. The process releases the resource.

 A system table records whether each resource is free or

allocated; for each resource that is allocated, the table also

records the process to which it is allocated. If a process

D e p t o f C S E , M B I T S Page 2

requests a resource that is currently allocated to another

process, it can be added to a queue of processes waiting for

this resource.

 Example for deadlock: consider a system with one printer

and one DVD drive. Suppose that process Pi is holding the

DVD and process Pj is holding the printer. If Pi requests

the printer and Pj requests the DVD drive, a deadlock

occurs.

NECESSARY CONDITIONS FOR DEADLOCK

 For occurring deadlocks, 4 necessary conditions should be

satisfied:

1. Mutual exclusion. At least one resource must be held in a

non-sharable mode; that is, only one process at a time can

use the resource. If another process requests that resource,

the requesting process must be delayed until the resource

has been released.

2. Hold and wait. A process must be holding at least one

resource and waiting to acquire additional resources that

are currently being held by other processes.

3. No preemption. Resources cannot be preempted; that is, a

resource can be released only voluntarily by the process

holding it, after that process has completed its task.

4. Circular wait. A set {P0 , Pl, ... , Pn} of waiting processes

must exist such that Po is waiting for a resource held by

P1, P1 is waiting for a resource held by P2, ... , Pn-1 is

D e p t o f C S E , M B I T S Page 3

waiting for a resource held by Pn and Pn is waiting for a

resource held by Po.

RESOURCE-ALLOCATION GRAPH

 Deadlocks can be described more precisely in terms of a

directed graph called a system resource-allocation graph.

 This graph consists of a set of vertices V and a set of edges

E. The set of vertices V is partitioned into two different

types of nodes: P = {P1, P2, ... ,Pn}, the set consisting of

all the active processes in the system, and R = {R1, R2, ... ,

Rm} the set consisting of all resource types in the system.

 A directed edge from process Pi to resource type Rj is

denoted by Pi→Rj; it signifies that process Pi has

requested an instance of resource type Rj and is currently

waiting for that resource.

 A directed edge from resource type Rj to process Pi is

denoted by Rj→Pi; it signifies that an instance of resource

type Rj has been allocated to process Pi.

 A directed edge Pi→Rj is called a request edge; a

directed edge Rj→Pi is called an assignment edge.

 We represent each process Pi as a circle and each resource

type Rj as a rectangle. Since resource type Ri may have

more than one instance, we represent each such instance as

a dot within the rectangle.

D e p t o f C S E , M B I T S Page 4

 A request edge points to only the rectangle Rj, whereas an

assignment edge must also designate one of the dots in the

rectangle.

 When process Pi requests an instance of resource type Rj, a

request edge is inserted in the resource-allocation graph.

When this request can be fulfilled, the request edge is

instantaneously transformed to an assignment edge. When

the process no longer needs access to the resource, it

releases the resource; as a result, the assignment edge is

deleted.

 Consider the following resource-allocation graph

 Process P1 is holding an instance of resource type R2

and is waiting for an instance of resource type R1.

 Process P2 is holding an instance of R1 and an instance

of R2 and is waiting for an instance of R3.

D e p t o f C S E , M B I T S Page 5

 Process P3 is holding an instance of R3.

 If the graph contains no cycles, then no process in the

system is deadlocked.

 If the graph contains a cycle, then a deadlock may exist.

 If each resource type has exactly one instance, then a

cycle implies that a deadlock has occurred.

 In this case, a cycle in the graph is both a necessary and

a sufficient condition for the existence of deadlock.

 If each resource type has several instances, then a cycle

does not necessarily imply that a deadlock has

occurred. In this case, a cycle in the graph is a

necessary but not a sufficient condition for the existence

of deadlock.

 Eg1:

D e p t o f C S E , M B I T S Page 6

 There are 2 cycles:

P1 – R1 – P2 – R3 – P3 – R2 – P1

P2 – R3 – P3 – R2 – P2

 Processes P1, P2, and P3 are deadlocked. Process P2 is

waiting for the resource R3, which is held by process P3.

Process P3 is waiting for either process P1 or process P2

to release resource R2. In addition, process P1 is waiting

for process P2 to release resource R1.

 Another Eg2:

 Here also we have a cycle: P1 – R1 – P3 – R2 – P1

 However, there is no deadlock. Observe that process P4

may release its instance of resource type R2. That resource

can then be allocated to P3, breaking the cycle.

 In summary, if a resource-allocation graph does not

have a cycle, then the system is not in a deadlocked

D e p t o f C S E , M B I T S Page 7

state. If there is a cycle, then the system may or may not

be in a deadlocked state.

METHODS FOR HANDLING DEADLOCKS

1. Prevent or avoid deadlocks ensuring that the system will

never enter a deadlocked state.

2. Allow the system to enter a deadlocked state, detect it,

and recover it.

3. Ignore the deadlock problem and pretend that deadlocks

never occur in the system.

 The third solution is the one used by most OS, including

UNIX and Windows

 It is then up to the application developer to write programs

that handle deadlocks.

 In this case, the undetected deadlock will affect system's

performance

 Eventually, the system will stop functioning and will need

to be restarted manually.

 In many systems, deadlocks occur infrequently (say,

once per year). So, this method is cheaper than the

prevention, avoidance, or detection and recovery methods.

D e p t o f C S E , M B I T S Page 8

DEADLOCK PREVENTION

 For a deadlock to occur, each of the four necessary

conditions must hold.

 By ensuring that at least one of these conditions cannot

hold, we can prevent the occurrence of a deadlock.

1. Mutual Exclusion

 The mutual-exclusion condition must hold for non-sharable

resources.

 Sharable resources do not require mutually exclusive

access and thus cannot be involved in a deadlock.

 Read-only files are a good example of a sharable resource.

 However, we cannot prevent deadlocks by denying the

mutual-exclusion condition, because some resources are

basically non-sharable.

2. Hold and Wait

 To ensure that the hold-and-wait condition never occurs in

the system, guarantee that, whenever a process waits for a

resource, it does not hold any other resources.

 One method that can be used requires each process to

request and be allocated all its resources before it

begins execution.

 An alternative method allows a process to request some

resources only when it has no resources. ie Before it can

D e p t o f C S E , M B I T S Page 9

request any additional resources it must release all the

resources that it is currently allocated.

 Example: Consider a process that copies data from a DVD

drive to a file on disk, sorts the file, and then prints the

results to a printer.

 If all resources must be requested at the beginning of the

process, then the process must initially request the DVD

drive, disk file, and printer. It will hold the printer for its

entire execution, even though it needs the printer only at

the end.

 The second method allows the process to request initially

only the DVD drive and disk file. It copies from the DVD

drive to the disk and then releases both the DVD drive and

the disk file.

 The process must then again request the disk file and the

printer. After printing, it releases these two resources and

terminates.

 Disadvantages: In first method, resource utilization

may be low, since resources may be allocated but unused

for a long period.

 In second method, we can release the DVD drive and disk

file, and then again request the disk file and printer only if

we can be sure that our data will remain on the disk

file.ie no other process changes the data in disk file.

D e p t o f C S E , M B I T S Page 10

3. No Preemption

 To ensure that this condition does not hold, we can use

preemption.

 If a process is holding some resources and requests another

resource that cannot be immediately allocated to it (that is,

the process must wait), then all resources the process is

currently holding are preempted.

 If a process requests some resources, first check whether

they are available.

 If available allocate them.

 If they are not available, check whether they are allocated

to some other process that is waiting for additional

resources.

 If so, preempt the desired resources from the waiting

process and allocate them to the requesting process.

 If the resources are neither available nor held by a waiting

process, the requesting process must wait. While it is

waiting, some of its resources may be preempted, only

if another process requests them.

 The process will be restarted only when it can regain its

old resources, as well as the new ones that it is requesting.

4. Circular Wait

 Ensure that this condition never holds

D e p t o f C S E , M B I T S Page 11

 Impose a total ordering of all resource types and to

require that each process requests resources in an

increasing order of enumeration.

 Let R = {R1, R2, ... ,Rm} be the set of resource types.

 Assign to each resource type a unique integer number,

which allows us to compare two resources and to

determine whether one precedes another in our ordering.

 Define a one-to-one function F: R →N, where N is the set

of natural numbers.

 Example,

F (tape drive) = 1

F (disk drive) = 5

F (printer) = 12

 Each process can request resources only in an

increasing order of enumeration.

 A process can initially request any number of instances of

a resource type Ri.

 After that, the process can request instances of resource

type Rj if and only if F(Rj) >F(Ri).

 A process requesting an instance of resource type Rj must

have released any resources Ri such that F(Ri)>=F(Rj).

 Let the set of processes involved in the circular wait be

{P0 , P1, ... , Pn,}where Pi is waiting for a resource Ri,

which is held by process Pi+l·

 Since process Pi+1 is holding resource Ri while requesting

resource Ri+1, we must have F(Ri) < F(Ri+1) for all i.

D e p t o f C S E , M B I T S Page 12

 But this condition means that F(R0) < F(R1) < ... < F(Rn)

<F (R0).

 By transitivity, F(R0) < F(R0), which is impossible.

Therefore, there can be no circular wait.

 Eg: Consider Process P1 holds resource number 1 and

waits for resource number 2. Process P2 holds resource

number 2 and waits for resource number 3. Process P3

holds resource number 3 but cannot wait for resource

number 1, since 1<3. So there should not be a circular

waiting situation, if we follow the increasing order of

resources.

DEADLOCK AVOIDANCE

 It requires additional information about how resources

are going to be requested in future.

 When a process request for a resource, the system should

be able to decide whether it can be granted or not.

 In this decision making, the system consider the resources

currently available, the resources currently allocated to

each process, and the future requests and releases of each

process.

 Each process declares the maximum number of resources

that it may need.

 A deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that a circular wait

condition can never exist.

D e p t o f C S E , M B I T S Page 13

 The following algorithms are used for deadlock avoidance

1. Safe State Algorithm

 A state is safe if the system can allocate resources to each

process in some order and still avoid a deadlock.

 A system is in a safe state only if there exists a safe

sequence.

 A sequence of processes <P1, P2, ... , Pn> is a safe

sequence if, for each Pi, the resource requests by Pi can be

satisfied by the currently available resources plus the

resources held by all Pj, with j <i.

 If the resources that Pi needs are not immediately

available, then Pi can wait until all Pj have finished. When

they have finished, Pi can obtain all of its needed

resources, complete its designated task, return its allocated

resources, and terminate.

 When Pi terminates, Pi+l can obtain its needed resources,

and so on.

 If no such sequence exists, then the system state is said

to be unsafe.

 A safe state is not a deadlocked state.

 A deadlocked state is an unsafe state.

 Not all unsafe states are deadlocks; unsafe state may

lead to a deadlock.

D e p t o f C S E , M B I T S Page 14

 Example: Consider a system with twelve magnetic tape

drives and three processes: Po, P1, and P2. Process Po

requires ten tape drives, process P1 may need four tape

drives, and process P2 may need up to nine tape drives.

 Suppose currently process Po is holding five tape drives,

process P1 is holding two tape drives, and process P2 is

holding two tape drives.

 The system is in a safe state. The sequence <P1, P0, P2>

satisfies the safety condition.

D e p t o f C S E , M B I T S Page 15

 Process P1 can immediately be allocated its free tape

drives (2 more) and then return them

 Then process Po can get all its tape drives and return them

(1 free + 4 from P1 = total 5)

 Finally process P2 can get all its tape drives and return

them (all are free now)

 A system can go from a safe state to an unsafe state

suddenly.

 Suppose process P2 requests and is allocated one more

tape drive.

 The system is no longer in a safe state.

 After allocating one more tape drive to P2, there are 2

more free.

 Process P1 can be allocated with these 2 and complete it.

 When it returns them, the system will have only four

available tape drives.

 Po needs five more tape drives. It will have to wait,

because they are unavailable.

 Similarly, process P2 may request six additional tape

drives and have to wait, resulting in a deadlock.

 Our mistake was in granting the request from process P2

for one more tape drive.

 If we had made P2 wait until either of the other processes

had finished and released its resources, then we could have

avoided the deadlock.

D e p t o f C S E , M B I T S Page 16

 The request is granted only if the allocation leaves the

system in a safe state.

 Drawback: If a process requests a resource that is

currently available, it may still have to wait. Thus,

resource utilization may be lower

2. Resource-Allocation-Graph Algorithm

 Applicable to the systems with only one instance of each

resource.

 In a resource allocation graph, in addition to the request

and assignment edges we introduce a new type of edge,

called a claim edge.

 A claim edge Pi →Rj indicates that process Pi may

request resource Rj at some time in the future.

 This edge resembles a request edge in direction but is

represented in the graph by a dashed line.

 When process Pi requests resource Rj, the claim edge

Pi→Rj is converted to a request edge.

 Before process Pi starts executing, all its claim edges must

already appear in the resource-allocation graph.

 Suppose that process Pi requests resource Rj. The request

can be granted only if converting the request edge

Pi →Rj to an assignment edge Rj→Pi does not result in

the formation of a cycle in the resource-allocation graph.

D e p t o f C S E , M B I T S Page 17

 We check for safety by using a cycle-detection algorithm.

It requires an order of n
2

operations, where n is the

number of processes in the system.

 If no cycle exists, then the allocation of the resource will

leave the system in a safe state.

 If a cycle is found, then the allocation will put the system

in an unsafe state. In that case, process Pi will have to wait

for its requests to be satisfied.

 Consider the resource-allocation graph below:

 Suppose P2 requests R2. Although R2 is currently free, we

cannot allocate it to P2, since this action will create a cycle

in the graph

 A cycle indicates that the system is in an unsafe state. If P1

requests R2, and P2 requests R1, then a deadlock will

occur.

 Drawback: Applicable to the systems with only one

instance of each resource.

D e p t o f C S E , M B I T S Page 18

3. Banker's Algorithm

[Will be discussed later]

DEADLOCK DETECTION

 If a system does not employ either a deadlock-prevention

or a deadlock avoidance algorithm, then a deadlock

situation may occur.

 An algorithm examines the state of the system to determine

whether a deadlock has occurred or not

1. Single Instance of Each Resource

 If all resources have only a single instance, then we can

define a deadlock detection algorithm that uses a variant

of the resource-allocation graph, called a wait-for

graph.

 We obtain this graph from the resource-allocation

graph by removing the resource nodes and collapsing

the appropriate edges.

 As before, a deadlock exists in the system if and only if

the wait-for graph contains a cycle

 An algorithm to detect a cycle in a graph requires an order

of n2 operations, where n is the number of vertices in the

graph.

D e p t o f C S E , M B I T S Page 19

 Drawback: The wait-for graph scheme is not applicable to a

resource-allocation system with multiple instances of each

resource type.

2. Several Instances of a Resource

 Deadlock detection algorithm is used

 Similar to Bankers algorithm

 In Bankers algorithm (deadlock avoidance), future

information (Max & Need) is also considered. But during

deadlock detection, future information is not needed. Only

the present request is considered.

 All data structures in detection algorithms are same as that

of Bankers algorithm except in the case of Max & Need.

 Here we use a matrix Request instead of Need.

D e p t o f C S E , M B I T S Page 20

 Deadlock detection Algorithm:

[Write Bankers algorithm by renaming Need as Request]

 Example problem

[Will be discussed later]

RECOVERY FROM DEADLOCK

 When a detection algorithm determines that a deadlock

exists either it may be handled manually by the user or

recovered automatically by the OS

 There are two options for breaking a deadlock. One is

simply to abort one or more processes to break the

circular wait. The other is to preempt some resources

from one or more of the deadlocked processes.

Process Abortion

 2 ways are there for process abortion

1. Abort all deadlocked processes.

o This method clearly will break the deadlock cycle, but

at great expense.

o All the work done by these processes become invalid

and to be recomputed again

2. Abort one process at a time until the deadlock cycle is

eliminated.

o After aborting each process, deadlock detection

algorithm is run.

D e p t o f C S E , M B I T S Page 21

o We must determine which deadlocked process should

be aborted.

o This determination is a policy decision, similar to

CPU-scheduling decisions.

o We should abort those processes whose termination

will incur the minimum cost.

o Many factors may affect which process is chosen:

 What the priority of the process is?

 How long the process has computed and how

much longer the process will compute before

completing its designated task

 How many and what types of resources the

process has used

 How many more resources the process needs in

order to complete

 How many processes will need to be terminated

 Whether the process is interactive or batch

 Drawback of process abortion: If the process was in the

middle of updating a file, aborting it will leave that file in

an incorrect state.

Resource Preemption

 We can successively preempt some resources from

processes and give these resources to other processes until

the deadlock cycle is broken.

 Three issues need to be addressed:

D e p t o f C S E , M B I T S Page 22

 Selecting a victim. Which resources and which processes

are to be preempted? We must determine the order of

preemption to minimize cost. Cost factors may include

such parameters as the number of resources a deadlocked

process is holding and the amount of time the process has

thus far consumed during its execution.

 Rollback. If we preempt a resource from a process, what

should be done with that process? Clearly, it cannot

continue with its normal execution; it is missing some

needed resource. We must roll back the process to some

safe state and restart it from that state.

 Starvation. How do we ensure that starvation will not

occur? That is, how can we guarantee that resources will

not always be preempted from the same process?

